
Sensitivity Analysis in SUNDIALS:
Current and Coming Attractions

Radu Şerban

Center for Applied Scientific Computing
Lawrence Livermore National Laboratory

Eighth DOE ACTS Collection Workshop
August 22, 2007

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

Outline CASC

1 SUNDIALS: overview

2 Sensitivity Analysis
Overview: what? why? how?
Forward sensitivity analysis
Adjoint sensitivity analysis
Higher-order sensitivities

3 Implementation considerations
Efficiency issues
(Non-)commutativity issues

4 CVODES and IDAS
Features
Usage
Examples

5 Final remarks

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

Development timeline CASC

Solution of large systems in parallel motivated writing (or rewriting) solvers in C

CVODE C rewrite of VODE/VODPK [Cohen,Hindmarsh, 1994]

PVODE parallel extension of CVODE [Byrne,Hindmarsh, 1998]

KINSOL C rewrite of NKSOL [Taylor,Hindmarsh, 1998]

IDA C rewrite of DASPK [Hindmarsh,Taylor, 1999]

Codes organized as a suite (SUNDIALS) in 2002

[Hindmarsh,Brown,Grant,Lee,S.,Shumaker,Woodward, 2005]

Sensitivity capable solvers in SUNDIALS

CVODES [S.,Hindmarsh, 2002]

IDAS [S., 2007]

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

The SUNDIALS solvers CASC

CVODE - ODE solver

Variable-order, variable-step BDF (stiff) or implicit Adams (nonstiff)

Nonlinear systems solved by Newton or functional iteration

Linear systems solved by direct (dense or band) or iterative solvers

IDA - DAE solver

Variable-order, variable-step BDF

Nonlinear system solved by Newton iteration

Linear systems solved by direct or iterative solvers

KINSOL - nonlinear solver

Inexact Newton solver (GMRES, BiCG-Stab, or TFQMR iterative linear solvers)

(Modified) Newton solver (dense or band direct linar solvers)

CVODES

Sensitivity-capable (forward & adjoint) version of CVODE

IDAS

Sensitivity-capable (forward & adjoint) version of IDA

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

Salient features of the SUNDIALS solvers CASC

Philosophy: Keep codes simple to use
Written in C

Fortran interfaces: FCVODE, FIDA, and FKINSOL

Matlab interfaces: SUNDIALSTB (CVODES, IDAS, and KINSOL)

Written in a data structure neutral manner
No specific assumptions about data
Alternative data representations and operations can be provided

Modular implementation: vector modules, linear solver modules,
preconditioner modules

Require minimal problem information, but offer user control over
most parameters
Sensitivity Analysis

Philosophy: Require minimal changes to enable SA
Provide both FSA and ASA support

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

What is SA? CASC

Definition

Broadly speaking, sensitivity analysis (SA) is the study of how the variation in the
output of a model (numerical or otherwise) can be apportioned, qualitatively or
quantitatively, to different sources of variation.

Local sensitivity analysis (dynamical systems)

F (ẏ , y , p) = 0

g(p) = g(y(p), p)

where y ∈ Rn and g : Rn × RNp → R.
Considering the Taylor expansion of g around the nominal value p

g(p + δp) = g(p) +
dg

dp
δp + (δp)T d2g

dp2
δp + O(‖δp‖3)

we define

1st order SA problem:
find the gradient dg

dp = gy yp + gp

2nd order SA problem:

find the Hessian d2g
dp2 = (INp ⊗ gy)ypp + gT

py yp + yT
p gyp + yT

p gyy yp + gpp

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

Why do SA? CASC

Model evaluation
Finding most and least influential parameters

Model reduction
Reducing model complexity, while preserving its input-output
behavior

Data assimilation
Merging observed information into a model in order to improve its
accuracy

Uncertainty quantification
Characterizing (quantitatively) and reducing uncertainty in model
predictions

Dynamically-constrained optimization
Improving model response (better performance, better
agreement with observations, etc.)

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

How to perform SA? (1) CASC

Parameter-dependent ODE system

Model: F (ẏ , y , p) = 0
Output functional: g(p) = g(y(p), p)

Finite-difference sensitivity analysis

dg
dpi

(p) ≈
g(p + eiδpi) − g(p)

δpi

or

dg
dpi

(p) ≈
g(p + eiδpi) − g(p − eiδpi)

2δpi

where ei is the i-th column of the identity matrix and δp is a vector of perturbations.

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

How to perform SA? (2) CASC

Parameter-dependent ODE system

Model: F (ẏ , y , p) = 0
Output functional: g(p) = g(y(p), p)

Forward sensitivity analysis

Fẏ ṡi + Fy si + Fpi = 0

and

dg/dp = gy si + gpi

Cost ∼ (1 + Np) × cost(sim)

Adjoint sensitivity analysis

−(λT Fẏ)′ + λT Fy + h(g) = 0

and

〈Fp, λ〉 → ∇pg(p)

Cost ∼ (1 + Ng) × cost(sim)

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

FSA for ODE and DAE systems CASC

Parameter dependent system: F (ẏ , y , p) = 0 , y(t0) = y0(p)

Output functional: g(y , p)

Sensitivity systems: (i = 1, 2, . . . , Np)

Fẏ ṡi + Fy si + Fpi = 0 , si(t0) = y0pi

Gradient of output functional:

dg
dp

= gy S + gp

where S = [s1, s2, . . . , sNp] is the sensitivity matrix.

Sensitivity equations depend on p but not on g.

A linear combination Su of all sensitivity vectors can be
computed with ∼ twice the cost of computing y .

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

ASA for ODE and DAE systems (1) CASC

Model: F (ẏ , y , p) = 0 , y(t0) = y0(p)

Output functional: G(p) =
∫ tf

t0
g(y , p) dt

Gradient: dG
dp =

∫ tf
t0

(gp − λT Fp) dt − (λT Fẏ yp)|
tf
t0

Adjoint system: (λT Fẏ)′ − λT Fy = −gy , λ(tf) =?

Consistent final conditions [Cao,Li,Petzold,S., 2003]

index-0 and index-1 DAE

F (ẏ , y) = 0 ⇒ (λT Fẏ)′ − λT Fy = −gy

Can use any λ(tf) such that
(

λT Fẏ

)

t=tf
= 0

(in particular λ(tf) = 0) and therefore

dG

dp
=

∫ tf

t0

(

gp − λT Fp

)

dt +
(

λT Fẏ

)

t=t0
y0p

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

ASA for ODE and DAE systems (2) CASC

Model: F (ẏ , y , p) = 0 , y(t0) = y0(p)

Output functional: G(p) =
∫ tf

t0
g(y , p) dt

Gradient: dG
dp =

∫ tf
t0

(gp − λT Fp) dt − (λT Fẏ yp)|
tf
t0

Adjoint system: (λT Fẏ)′ − λT Fy = −gy , λ(tf) =?

Consistent final conditions [Cao,Li,Petzold,S., 2003]

Hessenberg index-2 DAE

ẏd = f d (yd , ya, p)

0 = f a(yd , p)
⇒

λ̇d = −AT λd − CT λa − gT
yd

0 = −BT λd − gT
ya

Search for final conditions of the form λd (tf) = (CT ξ)t=tf

t = tf ⇒
{

λdT B = −gya ⇒ ξT CB = −gya ⇒ ξT = −gya (CB)−1

f a(yd , p) = 0 → Cyd
p = −f a

p ⇒ λdT yd
p = −yiT f a

p

⇒ λdT (tf) = −
(

gya (CB)−1C
)

t=tf

⇒ dG
dp =

∫ tf
t0

(

gp + λdT f d
p + λaT f a

p
)

dt + λdT (t0)yd
0p +

(

gya (CB)−1f a
p
)

t=tf

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

Sensitivity of g(y(tf), tf , p) (1) CASC

Use: dg
dp (tf) ≡

d
dtf

dG
dp

Gradient: dg
dp (tf) =

(

gp − λT Fp
)

t=tf
+

∫ tf
t0

µT Fp dt −
(

µT Fẏ yp
)

t=t0
−

d(λT Fẏ yp)

dtf

Adjoint system: (µT Fẏ)′ − µT Fy = 0 , µ(tf) =?

Consistent final conditions [Cao,Li,Petzold,S., 2003]

implicit ODE

F (ẏ , y) = 0 ⇒ (µT Fẏ)′ − µT Fy = 0

At t = tf
λT Fẏ = 0 ⇒ (λT Fẏ)′ + µT Fẏ = 0

and therefore
µT (tf) =

(

F−1
ẏ gy

)

t=tf

If y0 = y0(p) ⇒
dg

dp
(tf) = gp(tf) + µT (t0)A(t0)y0p

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

Sensitivity of g(y(tf), tf , p) (2) CASC

Use: dg
dp (tf) ≡

d
dtf

dG
dp

Gradient: dg
dp (tf) =

(

gp − λT Fp
)

t=tf
+

∫ tf
t0

µT Fp dt −
(

µT Fẏ yp
)

t=t0
−

d(λT Fẏ yp)

dtf

Adjoint system: (µT Fẏ)′ − µT Fy = 0 , µ(tf) =?

Consistent final conditions [Cao,Li,Petzold,S., 2003]

Hessenberg index-1 DAE

ẏd = f d (yd , ya)

0 = f a(yd , ya)
⇒

µ̇d = −AT µd − CT µa

0 = BT µd + DT µa

A = ∂f d /∂yd , B = ∂f d/∂ya, C = ∂f a/∂yd , D = ∂f a/∂ya nonsingular

µdT (tf) =
(

gyd − gya D−1C
)

t=tf

If yd
0 = yd

0 (p) ⇒
dg

dp
(tf) = gp(tf) + µdT (t0)y

d
0p

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

Sensitivity of g(y(tf), tf , p) (3) CASC

Use: dg
dp (tf) ≡

d
dtf

dG
dp

Gradient: dg
dp (tf) =

(

gp − λT Fp
)

t=tf
+

∫ tf
t0

µT Fp dt −
(

µT Fẏ yp
)

t=t0
−

d(λT Fẏ yp)

dtf

Adjoint system: (µT Fẏ)′ − µT Fy = 0 , µ(tf) =?

Consistent final conditions [Cao,Li,Petzold,S., 2003]

Hessenberg index-2 DAE

ẏd = f d (yd , ya)

0 = f a(yd)
⇒

µ̇d = −AT µd − CT µa

0 = BT µd

A = ∂f d /∂yd , B = ∂f d/∂ya, C = ∂f a/∂yd , CB nonsingular

µdT (tf) =

(

gyd − gya (CB)−1
(

CA +
dC

dt

))

t=tf

(

I − B(CB)−1C
)

t=tf

If yd
0 = yd

0 (p) ⇒
dg

dp
(tf) = gp(tf) + µdT (t0)y

d
0p

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

Higher-order sensitivities with FSA CASC

Straightforward extension of 1st order SA.

Except when dealing with very few parameters, the computational cost is
exorbitant.

Example

ODE ẏ = f (t , y) ; y(t0) = y0(p) ; y ∈ Rn, p ∈ RNp

Functional g(y(p))

Hessian
d2g

dp2
=

(

INp ⊗ gy

)

ypp + yT
p gyy yp

where

ẏp = fy yp ; yp(t0) =
dy0

dp

ẏpp = fy ypp +
(

In ⊗ yT
p

)

fyy yp ; ypp(t0) =
d2y0

dp2

Note that dim(yp) = nNp and dim(ypp) = n2Np .

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

Higher-order sensitivities with ASA CASC

Use the same trick as for the “pointwise functional” case: take an additional
formal derivatives of the gradient of either G or g.

The cost of computing a full Hessian is roughly equivalent to the cost of
computing the gradient with FSA. However, Hessian-vector products can be
cheaply computed with one additional adjoint solve [Ozyurt and Barton, 2005]

Example

ODE ẏ = f (t , y) ; y(t0) = y0(p) ; y ∈ Rn, p ∈ RNp

Functional G(p) =

∫ tf

t0

g(t , y) dt

Hessian-vector product
∂2G

∂p2
u =

[(

λT ⊗ INp

)

yppu + yT
p µ

]

t=t0

where

− µ̇ = f T
y µ +

(

λT ⊗ In
)

fyy s ; µ(tf) = 0

− λ̇ = f T
y λ + gT

y ; λ(tf) = 0

ṡ = fy s + fpu ; s(t0) = y0pu

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

Generation of the sensitivity equations CASC

Forward sensitivity analysis

Analytical

Automatic differentation (ADIC, ADOLC)

Directional derivative approximations

fy si ≈
f (t,y+σy si ,p)−f (t,y−σy si ,p)

2σy

fpi ≈
f (t,y,p+σi ei p)−f (t,y,p−σi ei)

2σi

{

σi = |p̄i |
√

max(rtol, ε)
σy = 1

max(1/σi ,‖si‖WRMS/|p̄i |)

or

fy si + fpi ≈
f (t , y + σsi , p + σei p) − f (t , y − σsi , p − σei)

2σ

where σ = min(σi , σy)

Adjoint sensitivity analysis

Analytical

Reverse automatic differentiation (ADOLC)

No finite-difference option (cost ∼ costFSA)

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

FSA with implicit solvers CASC

FSA effectively implies solving an extended system of dimension N × Np ⇒ efficient
implementation of an implicit integrator must take advantage of the structure of the
sensitivity equations and the fact that they are linearizations of the original DE.

Solutions (for implicit ODE/DAE integrators)

Staggered Direct [Caracotsios and Stewart, 1985]:
iterate to convergence the nonlinear state system and then solve the linear
sensitivity systems
requires formation and storage of J; errors in J → errors in s

Simultaneous Corrector [Maly and Petzold, 1997]:
solve simultaneously a nonlinear system for both states and sensitivity variables
requires formation of sensitivity r.h.s. at every iteration

Staggered Corrector [Feehery, Tolsma, and Barton, 1997]:
iterate to convergence the nonlinear state system and then use a Newton method
to solve for the sensitivity variables
with iterative linear solvers → effectively Staggered Direct

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

ASA for nonlinear problems CASC

For nonlinear problems, the forward states are needed in the backward integration
phase. Moreover, when using an adaptive integrator, the number of integration steps is
not known apriori and the forward and backward DE are evaluated at different times. ⇒
need predictable and compact storage of state variables for the solution of the adjoint
system and an efficient interpolation scheme.

Solution: checkpointing

Represents a compromise between efficiency and memory requirements:

Simulations are reproducible from each checkpoint

Force Jacobian evaluation at checkpoints to avoid storing it

Store solution (and possibly first derivative) at all intermediate steps between two
consecutive checkpoints

Interpolation options: cubic Hermite, variable-order polynomial

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

Checkpointing CASC

Implementation

1 integrate forward step by step

2 dump checkpoint data after a given number of steps

3 continue until tf .

4 evaluate final conditions for adjoint problem

5 store interpolation data on second forward pass

6 propagate adjoint variables backward in time

7 1 forward + 1 backward ≤ total cost < 2 forward + 1 backward

t0 tf

ck1 ck2 · · ·

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

Discrete vs. continuous sensitivity CASC

Discretization of the adjoint vs. adjoint of the discretization?

Discrete adjoint of a RK method of order p is an order p discretization of the
adjoint equations [Hager, 2000].

BDF adjoints with variable step are not consistent with the continuous adjoint
equation [Sandu, 2003].

Time-dependent PDE solved with MOL: additional issues

DA: discretization of the adjoint PDE

no general derivation method (hard for systems of PDEs).
some objective functionals may be inadmissible
[Arian and Salas, 1997; Giles and Pierce, 1997].

AD: adjoint of the semi-discretization to ODE/DAE

do not require explicit BC for adjoint variables.
any cost functional is admissible.
may be inconsistent with the adjoint PDE (e.g. when using nonlinear
discretization schemes).
may not be consistent with any PDE close to boundaries
[Li and Petzold, 2004].

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

Salient features of the SUNDIALS SA solvers CASC

Solution of nonlinear systems for FSA
simultaneous corrector
staggered corrector
modified staggered corrector (CVODES only)

Two-pass checkpointing for ASA
Two different interpolation modules for ASA:

piece-wise cubic Hermite
variable-order polynomial

Support for integration of pure quadrature equations (for the
evaluation of integrals in ASA)

Support for simultaneous integration of multiple adjoint problems
and of adjoint problems depending on forward sensitivities (for
2nd order ASA)

Calculation of consistent initial conditions for state, sensitivity,
and adjoint variables (IDAS only)

Generation of the FSA sensitivity systems through directional
derivatives

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

IVP integration with CVODES CASC

Main function
/* Set tolerances, initial time, etc. */
y = N VNew Serial(N);
/* Load I.C. into y */
mem = CVodeCreate(CV BDF, CV NEWTON);
flag = CVodeSetUserData(mem, my data);
/* Set other optional inputs */
flag = CVodeInit(mem, rhs, t0, y);
flag = CVodeSStolerances(mem, rtol, atol);
flag = CVDense(mem, N);
for(i=1; i<= NOUT; i++) {

flag = CVode(mem, tout, y, &t, CV NORMAL);
/* Process solution y */

}
N VDestroy(y);
CVodeFree(&mem);

User-supplied functions

required
int rhs(realtype t, N Vector y, N Vector f, void *data);
optional
Jacobian information, preconditioner, rootfinding, quadrature, etc.

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

FSA with CVODES CASC

Main function (instrumented for FSA)

y = N VNew Serial(N);
mem = CVodeCreate(CV BDF, CV NEWTON);
flag = CVodeSet***(mem,...);
flag = CVodeInit(mem, rhs, t0, y);
flag = CVodeSStolerances(mem, rtol, atol);
flag = CVDense(mem, N);
yS = N VCloneVectorArray(Ns, N);
flag = CVodeSensInit(mem, Ns, CV STAGGERED, srhs, yS);
flag = CVodeSensEEtolerances(mem);
flag = CVodeSetSens***(mem,...);
for(i=1; i<= NOUT; i++) {

flag = CVode(mem, tout, y, &t, CV NORMAL);
flag = CVodeGetSens(mem, &t, yS);

}
N VDestroy(y);
N VDestroyVectorArray(Ns, yS);
CVodeFree(&mem);

User-supplied functions

recommended
int srhs(realtype t, N Vector y, N Vector f, N Vector yS,

N Vector fS, void *data, N Vector wrk1, N Vector wrk2);

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

ASA with CVODES CASC

Main function (instrumented for ASA)

y = N VNew Serial(N);
mem = CVodeCreate(CV BDF, CV NEWTON);
flag = CVodeSet***(mem, my data);
flag = CVodeInit(mem, rhs, t0, y);
flag = CVodeSStolerances(mem, rtol, atol);
flag = CVDense(mem, N);
flag = CVodeAdjInit(mem, nsteps, CV POLYNOMIAL);
for(i=1; i<= NOUT; i++) {

/*flag = CVode(mem, tout, y, &t, CV NORMAL);
flag = CVodeF(mem, tout, y, &t, CV NORMAL, &nckeck);

}
yB = N VNew Serial(NB);
flag = CVodeCreateB(mem, CV BDF, CV NEWTON, &idxB);
flag = CVodeInitB(mem, idxB, rhsB, tf, yB);
flag = CVodeSet***B(mem, idxB,...);
flag = CVodeB(mem, t0, CV NORMAL);
flag = CVodeGetB(mem, idxB, &t, yB);
N VDestroy(y);
N VDestroy(yB);
CVodeFree(&mem);

User-supplied functions

required
int rhsB(realtype t, N Vector y, N Vector yB, N Vector fB, void *data);
optional
Jacobian information, preconditioner, quadrature, etc.

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

FSA example: slider-crank CASC

Dynamics stabilized index-2 DAE (GGL formulation)

q̇ = v − ΦT
q (q)µ

M(q)v̇ = Q(q, v , k , c) − ΦT
q (q)λ

Φ(q) = 0 position constraints
Φq(q)v = 0 velocity constraints

I.C. q(0) = q0 , v(0) = v0

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

ASA example: brusselator CASC

Dynamics Two-species 2D time-dependent PDE
{

ut = ε∆u + u2v − (B + 1)u + A
vt = ε∆v − u2v + Bu

in Ω = [0, L]2

B.C. (∂u/∂n)|∂Ω = (∂v/∂n)|∂Ω = 0

I.C. u(x , y , t0) = u0(x , y) ≡ 1.0 − 0.5 cos(πy/L)

v(x , y , t0) = v0(x , y) ≡ 3.5 − 2.5 cos(πx/L)

Output g(t) = (1/|Ω|)
∫

Ω u(x , y , t) dΩ

Adjoint PDE
{

λt = −ε∆u − (2uv − B − 1)λ + (2uv − B)µ
µt = −ε∆v − u2λ − u2µ

B.C. (∂λ/∂n)|∂Ω = (∂µ/∂n)|∂Ω = 0

I.C. λ(x , y , tf) = 1.0

µ(x , y , tf) = 0.0

Sensitivity δu0 , δv0 ⇒ δg(tf)

g(tf) = (1/|Ω|)
∫

Ω [λ(0, x , y)δu0(x , y) + µ(0, x , y)δv0(x , y)] dΩ

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

ASA example: brusselator CASC

Initial conditions u(t0, x , y) ≡ u0(x , y) Final solution u(tf , x , y)

Adjoint variables dg(tf)/du0 ≡ λ(t0, x , y) Weak parallel scaling
(jacquard.nersc.gov)

12 4 8 16 32 64
0

5

10

15

20

25

Number of processes

C
PU

 ti
m

e
(s

)

Simulation
ASA

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

Coming attractions in SUNDIALS CASC

SUNDIALS

IDAS- DAE solver with SA capabilities

CPODES- Coordinate projection solver for ODE with invariants
New linear solver modules

Direct dense and band Blas+Lapack linear solvers
Support for sparse direct linear solvers

FSA

Support for FSA of pure quadrature variables

ASA

Support for simultaneous integration of multiple backward
problems

Support for simultaneous FSA-ASA (for 2nd order SA using
forward over adjoint)

- available in next SUNDIALS release (end ’07)

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

www.llnl.gov/casc/sundials CASC

The SUNDIALS suite

Open source, BSD license

Extended documentation

User support

SUNDIALS Sensitivity Analysis Implementation CVODES and IDAS Final remarks

Sensitivity Analysis is... CASC

useful
in several different areas (e.g. dynamically-constrained
optimmization, UQ).

enabling
for various types of analysis (ROM evaluation, global error
analysis, solution of certain classes of problems).

only a few function calls away
and general-purpose SA solvers are available.

worthy
and the effort required to add sensitivity capabilities to a
simulation tool is well invested.

UCRL-PRES-213978
This document was prepared as an account of work sponsored by an agency of the
United States Government. Neither the United States Government nor the University of
California nor any of their employees, makes any warranty, express or implied, or
assumes any legal liability or responsibility for the accuracy, completeness, or
usefulness of any information, apparatus, product, or process disclosed, or represents
that its use would not infringe privately owned rights. Reference herein to any specific
commercial product, process, or service by trade name, trademark, manufacturer, or
otherwise, does not necessarily constitute or imply its endorsement, recommendation,
or favoring by the United States Government or the University of California. The views
and opinions of authors expressed herein do not necessarily state or reflect those of
the United States Government or the University of California, and shall not be used for
advertising or product endorsement purposes.

This work was performed under the auspices of the U.S. Department of Energy by the
University of California, Lawrence Livermore National Laboratory under Contract No.
W-7405-Eng-48.

	SUNDIALS: overview
	Description

	Sensitivity Analysis
	Overview: what? why? how?
	Forward sensitivity analysis
	Adjoint sensitivity analysis
	Higher-order sensitivities

	Implementation considerations
	Efficiency issues
	(Non-)commutativity issues

	CVODES and IDAS
	Features
	Usage
	Examples

	Final remarks
	Final remarks

